Coeliac Disease and Noncoeliac Gluten Sensitivity

Caroline R. Meijer, Raanan Shamir, and Maria L. Mearin

ABSTRACT

The spectrum of gluten-related disorders was restricted to coeliac disease and wheat allergy, but the new contemporary entity referred to as noncoeliac gluten sensitivity has gained recognition mainly in adults but also in children. Noncoeliac gluten sensitivity is defined as the presence of a variety of symptoms related to gluten ingestion in patients in whom coeliac disease and wheat allergy have been excluded. The pathophysiology and biomarkers of coeliac disease and wheat allergy are well known, but this is not the case for noncoeliac gluten sensitivity. It is also not clear whether noncoeliac gluten sensitivity is caused by consumption of gluten or by consumption of fermentable oligosaccharides, disaccharides, monosaccharides, and polyols. Randomized trials on noncoeliac gluten sensitivity in children are lacking and are hardly needed to evaluate its role in paediatric patients with gastroenterology to avoid the use of unnecessary restrictive diets in children and interference with proper diagnosis of coeliac disease.

Key Words: gluten, gluten intolerance, gluten-related disorders, noncoeliac gluten sensitivity, wheat intolerance, wheat sensitivity

G

What Is Known

- The pathophysiology of noncoeliac gluten sensitivity is unknown and without specific biological markers.
- Gastrointestinal manifestations of gluten-related disorders can be indistinguishable from each other.
- The diagnosis of noncoeliac gluten sensitivity should not be established before coeliac disease and gluten allergy have been ruled out.

What Is New

- Unlike coeliac disease and wheat allergy, noncoeliac gluten sensitivity is an unclear and controversial entity.
- It is not clear whether noncoeliac gluten sensitivity is triggered by gluten consumption or by ingestion of fermentable oligosaccharides, disaccharides, monosaccharides, and polyols.
- High-quality randomized clinical trials in children are needed to evaluate the role of gluten in noncoeliac gluten sensitivity in the paediatric population.

CD

CD is an immune-mediated systemic disorder elicited by gluten and related prolamin in genetically susceptible individuals that is characterized by the presence of a variable combination of gluten-dependent clinical manifestations, CD-specific antibodies, human leucocyte antigen (HLA)-DQ2 or HLA-DQ8 haplotypes, and enteropathy (1). CD is a common disorder, with a prevalence in the general Western population of 1% to 3% (2). Furthermore, first-degree family members of patients with CD have an increased risk for the disease, already at a young age, ranging from 5% to 30%, depending on their sex and HLA makeup (1,3). Patients with other autoimmune diseases, including type 1 diabetes mellitus and autoimmune thyroid disease, or patients with selective immunoglobulin A deficiency, and those with certain syndromes such as Down syndrome, Turner syndrome, and Williams syndrome, have an increased risk of CD (1). More than 95% of patients with CD carry the HLA-DQ2 or -DQ8 heterodimers, and the rest express HLA-DQ2 or -DQ8–positive antigen-presenting cells to activated T cells. Once activated, the T cells produce interferon-γ and other cytokines, leading to a higher expression of the HLA-DQ molecules and thereby to increased gluten peptide presentation. This inflammatory process mediated by T cells leads to mucosal damage of the small bowel.

The incidence of CD is increasing worldwide, and many patients remain undiagnosed, probably because of the heterogeneity of the clinical picture, because CD can affect any organ, and not just...
the gastrointestinal tract (1,4–6). The development of CD and the onset of symptoms may occur at any age. The classical clinical picture of overt malabsorption with diarrhea, abdominal distension, and weight loss is observed, but only in a minority of children. Nonspecific signs and symptoms such as iron deficiency anemia, osteoporosis, or fatigue are now common and could be the only sign of CD (1). In addition, CD may be asymptomatic.

CD is diagnosed by a combination of clinical suspicion, detection of specific autoantibodies to tissue-transglutaminase, endomysium, and deamidated forms of gliadin peptides, and histology of small bowel biopsies performed when the patient is on a gluten-containing diet (1). The characteristic histological alterations of the small bowel mucosa of patients with CD who consume gluten are partial to total villous atrophy with crypt hyperplasia and intraepithelial lymphocytic infiltration, rated according to the Marsh classification III and IV. At present, the only treatment of CD is lifelong adherence to a gluten-free diet that reduces the risk of complications and the increased mortality.

WHEAT ALLERGY

In contrast to CD, WA is an immunoglobulin E–mediated reaction to the insoluble gliadins, particularly α-5 gliadin, the major allergen of wheat-dependent, exercise-induced anaphylaxis (“baker’s asthma”) (7). Usually, patients with WA are not allergic to other prolamines containing grains, such as rye or barley, and their wheat-free diet is less restrictive than the strict gluten-free diet for patients with CD. The symptoms of WA develop within minutes to hours after gluten ingestion and are typical for an immunoglobulin E–mediated allergy, including itching and swelling in the mouth, nose, eyes, and throat; rash and wheezing; and life-threatening anaphylaxis. The gastrointestinal manifestations of WA may be similar to those of CD, but WA does not cause (permanent) gastrointestinal damage.

A recent systematic review and meta-analysis aimed to provide up-to-date estimates of the prevalence of food allergy in Europe has reported an overall pooled estimate for all of the age groups of self-reported lifetime prevalence of allergy to wheat (95% confidence interval) of 3.6% (3.0–4.2), lower only to cow’s-milk allergy of 6.0% (5.7–6.4). The prevalence of food-challenge–positive to other prolamines containing grains, such as rye or barley, which occur in, respectively, 56% and 8% of the patients compared with 80% and 75% in the population with CD (31). It, however, has to be taken into account that AGAs are also frequently present in the general population. The vast majority of patients with NCGS showed immunoglobulin G AGA disappearance after gluten withdrawal. Half of the patients with NCGS were HLA-DQ2 or -DQ8 positive, a prevalence only slightly higher than in the general population (30%). The conclusion of a Cochrane review including 2 small randomized controlled trials, however, is that there is no evidence for efficacy of gluten exclusion in these disorders (12,29). The major effect of gluten in patients with NCGS is in the perception of their general well-being (30).

The diagnosis of NCGS is based on exclusion of other gluten-related disorders, especially CD and WA. Unfortunately, there are no biological markers specific to NCGS. The only antibodies observed in a retrospective study of adults with NCGS are immunoglobulin G and immunoglobulin A anti-gliadin antibodies (AGAs), which occur in, respectively, 56% and 8% of the patients compared with 80% and 75% in the population with CD (31). It, however, has to be taken into account that AGAs are also frequently present in the general population. The vast majority of patients with NCGS showed immunoglobulin G AGA disappearance after gluten withdrawal. Half of the patients with NCGS were HLA-DQ2 or -DQ8 positive, a prevalence only slightly higher than in the general population (30%–40%) (9,12). A double-blind, placebo-controlled challenge has been suggested to confirm NCGS diagnosis. This is a complicated procedure to be performed in practice, given the difficulty in preparing the intervention products, the need for highly trained personnel, and high costs (32). An alternative is the open food challenge, but this is less reliable because of the important placebo effect. It is necessary to confirm the diagnosis of NCGS on a gluten-containing diet to avoid missing the diagnosis of true CD.
<table>
<thead>
<tr>
<th>Author (reference)</th>
<th>Design</th>
<th>No. patients</th>
<th>Intervention</th>
<th>Results/conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campanella et al (22)</td>
<td>Retrospective</td>
<td>61 adults with non-CD with gastrointestinal symptoms similar to CD improved after GFD</td>
<td>Gluten reintroduction median duration of 5 mo from a daily slice of bread until normal Italian gluten intake</td>
<td>Clinical exacerbation in 54.2%</td>
</tr>
<tr>
<td>Sapone et al (34)</td>
<td>Observational, comparative</td>
<td>Adults on a gluten-containing diet: 13 with active CD, 11 with NCGS, and 7 controls</td>
<td>Immunohistochemistry, duodenal biopsies</td>
<td>Mucosal expression of IL-17 not increased in NCGS compared with that in controls</td>
</tr>
<tr>
<td>Biesiekierski et al (17)</td>
<td>Prospective, randomized, double-blind, placebo-controlled</td>
<td>34 adult patients with improvement in IBS symptoms (Rome III) after a GFD</td>
<td>Food intervention with gluten (16 g/day) (n = 19) or placebo (n = 15) for 6 wk</td>
<td>Clinical exacerbation after gluten and not after placebo</td>
</tr>
<tr>
<td>Sapone et al (35)</td>
<td>Observational, comparative</td>
<td>Adults: 26 with NCGS, 42 with active CD, and 39 controls</td>
<td>Intestinal permeability and study of expression of genes involved in barrier function and immunity in mucosal biopsy specimens</td>
<td>In contrast to CD in NCGS, no increased permeability or IL-6 and IL-21 but increased TLR2 and reduced FOXP3</td>
</tr>
<tr>
<td>Carroccio et al (23)</td>
<td>Retrospective</td>
<td>Adults: 276 with NCGS, 100 with CD, and 50 with IBS</td>
<td>Elimination diet: wheat, cow’s milk, eggs, tomato, and chocolate for 4 wk. Reintroduction of a single food at a time.</td>
<td>Two distinct populations of NCGS: isolated NCGS (70) and NCGS + multiple food hypersensitivity (206)</td>
</tr>
<tr>
<td>Brottveit et al (24)</td>
<td>Observational, comparative</td>
<td>Adults: 17 with CD and 31 with NCGS (HLA-DQ2+) on GFD</td>
<td>Gluten challenge, 4 slices of gluten-containing white bread daily for 3 days</td>
<td>Patients with NCGS reported significantly more symptoms after gluten challenge</td>
</tr>
<tr>
<td>Volta et al (31)</td>
<td>Retrospective</td>
<td>Adults: 78 with NCGS and 80 with CD</td>
<td>Serum determinations of IgG/IgA AGA, IgG DGP, IgA TGA, and IgA EMA</td>
<td>Patients with NCGS: 56% IgG AGA, 7.7% IgA AGA but no EMA, TGA, or DGP</td>
</tr>
<tr>
<td>Bucci et al (25)</td>
<td>Observational, comparative</td>
<td>Adults: 34 with CD on GFD, 35 with untreated CD, 16 with NCGS, 34 controls</td>
<td>In vitro gliadin peptide challenges in duodenal mucosal samples</td>
<td>Patients with NCGS do not express markers of inflammation</td>
</tr>
<tr>
<td>Brottveit et al (36)</td>
<td>Observational, comparative</td>
<td>Adults on a GFD: 30 with HLA-DQ2–positive NCGS and 15 with CD</td>
<td>Duodenal biopsies before and after gluten challenge with 4 slices of gluten-containing bread daily for 3 days</td>
<td>Innate and adaptive immune response of patients with CD to gluten challenge.</td>
</tr>
<tr>
<td>Vazquez-Roque et al (18)</td>
<td>Single-centre, randomized controlled 4-wk trial</td>
<td>45 adults with IBS-D (Rome II) including 22 HLA-DQ2/DQ8+</td>
<td>22 patients receiving GCD (11 HLA-DQ2/DQ8+), 23 patients receiving GFD (11 HLA-DQ2/DQ8+)</td>
<td>Improvement in symptoms after GFD.</td>
</tr>
<tr>
<td>Biesiekierski et al (19)</td>
<td>Double-blind, placebo-controlled, randomized cross-over rechallenge</td>
<td>37 adults with IBS (Rome III)</td>
<td>Reduced FODMAP diet for 2 wk, and then placed on high-gluten (16 g/day), low-gluten (2 g/day), and whey protein (14 g/day or control (16 g/day whey protein) diet followed by a washout period of at least 2 wk</td>
<td>Increased permeability after gluten in HLA-DQ2.8+ patients.</td>
</tr>
</tbody>
</table>

AGA = anti-gliadin antibody; CD = coeliac disease; DGP = deamidated forms of gliadin peptides; EMA = anti-endomysium; FODMAPs = fermentable oligosaccharides, disaccharides, monosaccharides, and polyols; FOXP3 = forkhead box P3; GCD = gluten-containing diet; GFD = gluten-free diet; HLA = human leucocyte antigen; IBS = irritable bowel syndrome; IBS-D = diarrhoea-predominant IBS; IFN = interferon; IgA = immunoglobulin A; IgG = immunoglobulin G; IL = interleukin; NCGS = noncoeliac gluten sensitivity; TGA = tissue-transglutaminase; TLR2 = Toll-like receptor 2.

* Reviews excluded.

† Markers of inflammatory and autoimmune diseases.

‡ Markers of adaptive immune response.

§ Markers of innate immune response.
The pathogenesis of NCGS is unknown. There is agreement among researchers that only minor histological alterations have been found in the small bowel mucosa of patients with NCGS, compatible with 0 (normal mucosa) or I (mild alterations) in Marsh classifications (10,17,34). On the contrary, there is discrepancy regarding intestinal permeability in NCGS, because some studies have reported normal permeability and others not, with increased permeability in a subgroup of HLA-DQ2/DQ8–positive patients (17,18,35). The patient selection in those contradicting studies, however, was different (Table 1).

Furthermore, gene expression analyses showed increased expression of Toll-like receptor 2 and reduced expression of the T-regulatory cell marker forkhead box P3 in patients with NCGS compared with those in patients with CD, suggesting a role of innate immunity in the pathogenesis of NCGS. Contrary to CD, however, most studies show that adaptive immunity markers are not increased in patients with NCGS (Table 1) (35,36).

In general, NCGS, and CD and WA, is treated with a gluten-free diet, but, considering the lack of knowledge about its gluten-(dose-)related character and about the permanent or transient nature of the condition, periodic reintroduction of gluten into the diet may be advised (9,37).

In summary, CD and WA are 2 well-described gluten-related diseases with clear guidelines for diagnosis and treatment. NCGS is a controversial entity with more questions than answers concerning its nature, diagnosis, and treatment. High-quality prospective, double-blind, randomized clinical trials on the role of specific diets in children with gastrointestinal symptoms are needed to evaluate the pathogenesis and treatment of NCGS. Unnecessary gluten withdrawal may have negative health effects, especially in healthy children in whom growth and well-being may be compromised by inadequate diets and in patients with CD in whom the withdrawal of gluten from the diet before excluding CD prevents a proper diagnosis.

REFERENCES